Arbeitspapier
LASSO-driven inference in time and space
We consider the estimation and inference in a system of high-dimensional regression equations allowing for temporal and cross-sectional dependency in covariates and error processes, covering rather general forms of weak dependence. A sequence of regressions with many regressors using LASSO (Least Absolute Shrinkage and Selection Operator) is applied for variable selection purpose, and an overall penalty level is carefully chosen by a block multiplier bootstrap procedure to account for multiplicity of the equations and dependencies in the data. Correspondingly, oracle properties with a jointly selected tuning parameter are derived. We further provide high-quality de-biased simultaneous inference on the many target parameters of the system. We provide bootstrap consistency results of the test procedure, which are based on a general Bahadur representation for the Z-estimators with dependent data. Simulations demonstrate good performance of the proposed inference procedure. Finally, we apply the method to quantify spillover effects of textual sentiment indices in a financial market and to test the connectedness among sectors.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP20/19
- Klassifikation
-
Wirtschaft
Hypothesis Testing: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
Forecasting Models; Simulation Methods
- Thema
-
LASSO
time series
simultaneous inference
system of equations
Z-estimation
Bahadur representation
martingale decomposition
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Chernozhukov, Victor
Härdle, Wolfgang
Huang, Chen
Wang, Weining
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2019
- DOI
-
doi:10.1920/wp.cem.2019.2019
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Chernozhukov, Victor
- Härdle, Wolfgang
- Huang, Chen
- Wang, Weining
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2019