Artikel

Can buildings be more intelligent than users? The role of intelligent supervision concept integrated into building predictive control

This study addresses a new generation of adaptable intelligent control systems for energy management. The proposed approach consists of a high-level predictive control system based on advanced simulation and optimization algorithms which interact with conventional machine-level controllers of HVAC systems, e.g., PID, in order to define optimized set points considering current and forecasted operation conditions, minimizing a predefined objective cost function, e.g., energy consumption, subjected to maintain predefined levels of comfort. The flexibility of the proposed architecture and the development of reliable surrogate models based on robust machine learning techniques are key features to combine green building requirements while granting or even improving occupant comfort. A first version of the proposed system was developed, and preliminary results emphasize its role in the path of transition to intelligent green buildings as a part of new buildings or, more important, as a retrofit of current buildings, with almost no changes on infrastructures, but promoting them to a smart building level.

Sprache
Englisch

Erschienen in
Journal: Energy Reports ; ISSN: 2352-4847 ; Volume: 6 ; Year: 2020 ; Issue: 1 ; Pages: 409-416 ; Amsterdam: Elsevier

Klassifikation
Wirtschaft
Thema
Green buildings
Energy efficiency
Intelligent supervision
Supervised predictive control

Ereignis
Geistige Schöpfung
(wer)
Sheikhnejad, Y.
Gonçalves, D.
Oliveira, M.
Martins, N.
Ereignis
Veröffentlichung
(wer)
Elsevier
(wo)
Amsterdam
(wann)
2020

DOI
doi:10.1016/j.egyr.2019.08.081
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Sheikhnejad, Y.
  • Gonçalves, D.
  • Oliveira, M.
  • Martins, N.
  • Elsevier

Entstanden

  • 2020

Ähnliche Objekte (12)