Arbeitspapier

Estimating the number of mean shifts under long memory

Detecting the number of breaks in the mean can be challenging when it comes to the long memory framework. Tree-based procedures can be applied to time series when the location and number of mean shifts are unknown and estimate the breaks consistently though with possible overfitting. For pruning the redundant breaks information criteria can be used. An alteration of the BIC, the LWZ, is presented to overcome long-range dependence issues. A Monte Carlo Study shows the superior performance of the LWZ to alternative pruning criteria like the BIC or LIC.

Language
Englisch

Bibliographic citation
Series: Diskussionsbeitrag ; No. 496

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Subject
long memory
mean shift
regression tree
ART
LWZ
LIC.

Event
Geistige Schöpfung
(who)
Sibbertsen, Philipp
Willert, Juliane
Event
Veröffentlichung
(who)
Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät
(where)
Hannover
(when)
2012

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Sibbertsen, Philipp
  • Willert, Juliane
  • Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät

Time of origin

  • 2012

Other Objects (12)