Artikel

Aggregated GP-based optimization for contaminant source localization

Recently a new simulation-based optimization benchmark of groundwater contaminant source localization problems has been introduced to the hydrogeological science community. Given information on contaminant concentration levels at each monitoring well and each time step, its objective is to identify the location of contaminant source. In this work, we analyze and look at the problem from different angles to gain more insights on this class of groundwater problems. To tackle the problem, a novel simulation-based optimization algorithm relying on an aggregated Gaussian process model, and the expected improvement criterion is introduced. Results from this study show that the proposed algorithm, though relying on an approximated Gaussian process model, demonstrates superior efficiency and reliability than a traditional expected improvement-based algorithm. The location of the monitoring wells was confirmed to play a crucial role in assisting the optimization algorithm to accurately localize the contaminant source. Additional monitoring wells, while adding more knowledge of the space-time mapping of concentration levels, could nevertheless slow down convergence of the algorithm due to the increase in problem complexity.

Sprache
Englisch

Erschienen in
Journal: Operations Research Perspectives ; ISSN: 2214-7160 ; Volume: 7 ; Year: 2020 ; Pages: 1-10 ; Amsterdam: Elsevier

Klassifikation
Wirtschaft
Thema
Contaminant source localization
Groundwater management
Expected improvement
Nonlinear programming
Simulation-based optimization

Ereignis
Geistige Schöpfung
(wer)
Krityakierne, Tipaluck
Baowan, Duangkamon
Ereignis
Veröffentlichung
(wer)
Elsevier
(wo)
Amsterdam
(wann)
2020

DOI
doi:10.1016/j.orp.2020.100151
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Krityakierne, Tipaluck
  • Baowan, Duangkamon
  • Elsevier

Entstanden

  • 2020

Ähnliche Objekte (12)