Konferenzbeitrag

Bias-corrected estimation in mildly explosive autoregressions

This paper provides a comprehensive Monte Carlo comparison of different finite-sample biascorrection methods for autoregressive processes. We consider situations where the process is either mildly explosive or has a unit root. The case of highly persistent stationary is also studied. We compare the empirical performance of the plain OLS estimator with an OLS and a Cauchy estimator based on recursive demeaning, as well as an estimator based on second differencing. In addition, we consider three different approaches for bias-correction for the OLS estimator: (i) bootstrap, (ii) jackknife and (iii) indirect inference. The estimators are evaluated in terms of bias and root mean squared errors (RMSE) in a variety of practically relevant settings. Our findings suggest that the indirect inference method clearly performs best in terms of RMSE for all considered orders of integration. If bias-correction abilities are solely considered, the jackknife works best for stationary and unit root processes. For the explosive case, the bootstrap and the indirect inference can be recommended. As an empirical application, we study Asian stock market overvaluation during bubbles and emphasize the importance of bias-correction for explosive series.

Sprache
Englisch

Erschienen in
Series: Beiträge zur Jahrestagung des Vereins für Socialpolitik 2015: Ökonomische Entwicklung - Theorie und Politik - Session: Time Series Econometrics ; No. A23-V1

Klassifikation
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Asset Pricing; Trading Volume; Bond Interest Rates

Ereignis
Geistige Schöpfung
(wer)
Kruse, Yves Robinson
Kaufmann, Hendrik
Ereignis
Veröffentlichung
(wann)
2015

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Kruse, Yves Robinson
  • Kaufmann, Hendrik

Entstanden

  • 2015

Ähnliche Objekte (12)