Artikel

On bootstrap inference for quantile regression panel data: A Monte Carlo study

This paper evaluates bootstrap inference methods for quantile regression panel data models. We propose to construct confidence intervals for the parameters of interest using percentile bootstrap with pairwise resampling. We study three different bootstrapping procedures. First, the bootstrap samples are constructed by resampling only from cross-sectional units with replacement. Second, the temporal resampling is performed from the time series. Finally, a more general resampling scheme, which considers sampling from both the cross-sectional and temporal dimensions, is introduced. The bootstrap algorithms are computationally attractive and easy to use in practice. We evaluate the performance of the bootstrap confidence interval by means of Monte Carlo simulations. The results show that the bootstrap methods have good finite sample performance for both location and location-scale models.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 3 ; Year: 2015 ; Issue: 3 ; Pages: 654-666 ; Basel: MDPI

Klassifikation
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Thema
quantile regression
bootstrap
fixed effects

Ereignis
Geistige Schöpfung
(wer)
Galvão Júnior, Antônio Fialho
Montes-Rojas, Gabriel
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2015

DOI
doi:10.3390/econometrics3030654
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Galvão Júnior, Antônio Fialho
  • Montes-Rojas, Gabriel
  • MDPI

Entstanden

  • 2015

Ähnliche Objekte (12)