Arbeitspapier

Asymptotic optimality of the quasi-score estimator in a class of linear score estimators

we prove that the quasi-score estimator in a mean-variance model is optimal in the class of (unbiased) linear score estimators, in the sense that the difference of the asymptotic covariance matrices of the linear score and quasi-score estimator is positive semi-definite. We also give conditions under which this difference in zero or under which it is positive definite. This result can be applied to measurement error models where it implies that the quasi-score estimator is asymptotically more efficient than the corrected score estimator.

Sprache
Englisch

Erschienen in
Series: Discussion Paper ; No. 477

Ereignis
Geistige Schöpfung
(wer)
Kukush, Alexander
Schneeweiss, Hans
Ereignis
Veröffentlichung
(wer)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(wo)
München
(wann)
2006

DOI
doi:10.5282/ubm/epub.1845
Handle
URN
urn:nbn:de:bvb:19-epub-1845-8
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kukush, Alexander
  • Schneeweiss, Hans
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Entstanden

  • 2006

Ähnliche Objekte (12)