Arbeitspapier

Asymptotic optimality of the quasi-score estimator in a class of linear score estimators

we prove that the quasi-score estimator in a mean-variance model is optimal in the class of (unbiased) linear score estimators, in the sense that the difference of the asymptotic covariance matrices of the linear score and quasi-score estimator is positive semi-definite. We also give conditions under which this difference in zero or under which it is positive definite. This result can be applied to measurement error models where it implies that the quasi-score estimator is asymptotically more efficient than the corrected score estimator.

Language
Englisch

Bibliographic citation
Series: Discussion Paper ; No. 477

Event
Geistige Schöpfung
(who)
Kukush, Alexander
Schneeweiss, Hans
Event
Veröffentlichung
(who)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(where)
München
(when)
2006

DOI
doi:10.5282/ubm/epub.1845
Handle
URN
urn:nbn:de:bvb:19-epub-1845-8
Last update
10.03.2025, 11:46 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Kukush, Alexander
  • Schneeweiss, Hans
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Time of origin

  • 2006

Other Objects (12)