Arbeitspapier

Model Averaging in Markov-Switching Models: Predicting National Recessions with Regional Data

This paper introduces new weighting schemes for model averaging when one is interested in combining discrete forecasts from competing Markov-switching models. In particular, we extend two existing classes of combination schemes - Bayesian (static) model averaging and dynamic model averaging - so as to explicitly reflect the objective of forecasting a discrete outcome. Both simulation and empirical exercises show that our new combination schemes outperform competing combination schemes in terms of forecasting accuracy. In the empirical application, we estimate and forecast U.S. business cycle turning points with state-level employment data. We find that forecasts obtained with our best combination scheme provide timely updates of the U.S. business cycles.

Sprache
Englisch

Erschienen in
Series: Bank of Canada Working Paper ; No. 2015-24

Klassifikation
Wirtschaft
Forecasting Models; Simulation Methods
Business Fluctuations; Cycles
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
Business fluctuations and cycles
Econometric and statistical methods

Ereignis
Geistige Schöpfung
(wer)
Guérin, Pierre
Leiva-Leon, Danilo
Ereignis
Veröffentlichung
(wer)
Bank of Canada
(wo)
Ottawa
(wann)
2015

DOI
doi:10.34989/swp-2015-24
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Guérin, Pierre
  • Leiva-Leon, Danilo
  • Bank of Canada

Entstanden

  • 2015

Ähnliche Objekte (12)