Arbeitspapier

Computational Efficiency in Bayesian Model and Variable Selection

Large scale Bayesian model averaging and variable selection exercises present, despite the great increase in desktop computing power, considerable computational challenges. Due to the large scale it is impossible to evaluate all possible models and estimates of posterior probabilities are instead obtained from stochastic (MCMC) schemes designed to converge on the posterior distribution over the model space. While this frees us from the requirement of evaluating all possible models the computational effort is still substantial and efficient implementation is vital. Efficient implementation is concerned with two issues: the efficiency of the MCMC algorithm itself and efficient computation of the quantities needed to obtain a draw from the MCMC algorithm. We evaluate several different MCMC algorithms and find that relatively simple algorithms with local moves perform competitively except possibly when the data is highly collinear. For the second aspect, efficient computation within the sampler, we focus on the important case of linear models where the computations essentially reduce to least squares calculations. Least squares solvers that update a previous model estimate are appealing when the MCMC algorithm makes local moves and we find that the Cholesky update is both fast and accurate.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 4/2007

Klassifikation
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Model Evaluation, Validation, and Selection
Computational Techniques; Simulation Modeling
Thema
Bayesian Model Averaging
Sweep operator
Cholesky decomposition
QR decomposition
Swendsen-Wang algorithm

Ereignis
Geistige Schöpfung
(wer)
Eklund, Jana
Karlsson, Sune
Ereignis
Veröffentlichung
(wer)
Örebro University School of Business
(wo)
Örebro
(wann)
2007

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Eklund, Jana
  • Karlsson, Sune
  • Örebro University School of Business

Entstanden

  • 2007

Ähnliche Objekte (12)