Arbeitspapier
Rating Companies with Support Vector Machines
The goal of this work is to introduce one of the most successful among recently developed statistical techniques - the support vector machine (SVM) - to the field of corporate bankruptcy analysis. The main emphasis is done on implementing SVMs for analysing predictors in the form of financial ratios. A method is proposed of adapting SVMs to default probability estimation. A survey of practically and commercially applied methods is given. This work proves that support vector machines are capable of extracting useful information from financial data although extensive data sets are required in order to fully utilise their classification power.
- Language
-
Englisch
- Bibliographic citation
-
Series: DIW Discussion Papers ; No. 416
- Classification
-
Wirtschaft
Neural Networks and Related Topics
Bankruptcy; Liquidation
Semiparametric and Nonparametric Methods: General
- Subject
-
Support vector machines
Company rating
Default probability estimation
Kreditwürdigkeit
Mustererkennung
Schätzung
Theorie
Vereinigte Staaten
support vector machine
- Event
-
Geistige Schöpfung
- (who)
-
Schäfer, Dirk
Moro, R. A.
Härdle, Wolfgang Karl
- Event
-
Veröffentlichung
- (who)
-
Deutsches Institut für Wirtschaftsforschung (DIW)
- (where)
-
Berlin
- (when)
-
2004
- Handle
- Last update
- 10.03.2025, 11:45 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Schäfer, Dirk
- Moro, R. A.
- Härdle, Wolfgang Karl
- Deutsches Institut für Wirtschaftsforschung (DIW)
Time of origin
- 2004