Artikel

Stochastic analysis and neural network-based yield prediction with precision agriculture

In this paper, we propose a general mathematical model for analyzing yield data. The data analyzed in this paper come from a characteristic corn field in the upper midwestern United States. We derive expressions for statistical moments from the underlying stochastic model. Consequently, we illustrate how a particular feature variable contributes to the statistical moments (and in effect, the characteristic function) of the target variable (i.e., yield). We also analyze the data with neural network techniques and provide two methods of data analysis. This mathematical model and neural network-based data analysis allow for better understanding of the variability within the data set, which is useful to farm managers attempting to make current and future decisions using the yield data. Lenders and risk management consultants may benefit from the insights of this mathematical model and neural network-based data analysis regarding yield expectations.

Language
Englisch

Bibliographic citation
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 14 ; Year: 2021 ; Issue: 9 ; Pages: 1-17 ; Basel: MDPI

Classification
Wirtschaft
Subject
categorical data
neural networks
precision agriculture
statistical moments
yield

Event
Geistige Schöpfung
(who)
Shoshi, Humayra
Hanson, Erik
Nganje, William
SenGupta, Indranil
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2021

DOI
doi:10.3390/jrfm14090397
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Shoshi, Humayra
  • Hanson, Erik
  • Nganje, William
  • SenGupta, Indranil
  • MDPI

Time of origin

  • 2021

Other Objects (12)