Artikel

Multi-objective evolutionary search strategies in constraint programming

It has been shown that evolutionary algorithms are able to construct suitable search strategies for classes of Constraint Satisfaction Problems (CSPs) in Constraint Programming. This paper is an explanation of the use of multi-objective optimisation in contrast to simple additive weighting techniques with a view to develop search strategies to classes of CSPs. A hierarchical scheme is employed to select a candidate strategy from the Pareto frontier for final evaluation. The results demonstrate that multi-objective optimisation significantly outperforms the single objective scheme in the same number of objective evaluations. In situations where strategies developed for a class of problems fail to extend to unseen problem instances of the same class, it is found that the structure of the underlying CSPs do not resemble those employed in the training process.

Language
Englisch

Bibliographic citation
Journal: Operations Research Perspectives ; ISSN: 2214-7160 ; Volume: 8 ; Year: 2021 ; Pages: 1-15 ; Amsterdam: Elsevier

Classification
Wirtschaft
Subject
Combinatorial optimization
Constraint programming
Genetic algorithms
Multi-objective optimization

Event
Geistige Schöpfung
(who)
Bennetto, Robert
van Vuuren, Jan
Event
Veröffentlichung
(who)
Elsevier
(where)
Amsterdam
(when)
2021

DOI
doi:10.1016/j.orp.2020.100177
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Bennetto, Robert
  • van Vuuren, Jan
  • Elsevier

Time of origin

  • 2021

Other Objects (12)