Arbeitspapier

Comparing Knowledge-Based Sampling to Boosting

Boosting algorithms for classification are based on altering the ini- tial distribution assumed to underly a given example set. The idea of knowledge-based sampling (KBS) is to sample out prior knowledge and previously discovered patterns to achieve that subsequently ap- plied data mining algorithms automatically focus on novel patterns without any need to adjust the base algorithm. This sampling strat- egy anticipates a user's expectation based on a set of constraints how to adjust the distribution. In the classified case KBS is similar to boosting. This article shows that a specific, very simple KBS algo- rithm is able to boost weak base classifiers. It discusses differences to AdaBoost.M1 and LogitBoost, and it compares performances of these algorithms empirically in terms of predictive accuracy, the area under the ROC curve measure, and squared error.

Sprache
Englisch

Erschienen in
Series: Technical Report ; No. 2005,26

Ereignis
Geistige Schöpfung
(wer)
Scholz, Martin
Ereignis
Veröffentlichung
(wer)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(wo)
Dortmund
(wann)
2005

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Scholz, Martin
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Entstanden

  • 2005

Ähnliche Objekte (12)