Arbeitspapier

Two-dimensional risk neutral valuation relationships for the pricing of options

The Black-Scholesmodelis basedona one-parameter pricingkernel with constantelasticity. Theoretical and empirical results suggest declining elasticity and, hence, a pricing kernel withat leasttwo parameters.We price European-style optionson assets whose probability distributions have two unknown parameters. We assume a pricing kernel which also has two unknown parameters. When certain conditions are met,atwo-dimensional risk-neutral valuation relationship exists for the pricing of these options: i.e. the relationshipbetween the price of the option and the prices of the underlying asset and one other option on the assetisthe sameasitwouldbe under risk neutrality.In this classofmodels,the priceof the underlying asset and that of one other option take the place of the unknown parameters.

Language
Englisch

Bibliographic citation
Series: CoFE Discussion Paper ; No. 07/08

Classification
Wirtschaft

Event
Geistige Schöpfung
(who)
Franke, Günter
Huang, James
Stapleton, Richard C.
Event
Veröffentlichung
(who)
University of Konstanz, Center of Finance and Econometrics (CoFE)
(where)
Konstanz
(when)
2007

Handle
URN
urn:nbn:de:bsz:352-opus-116603
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Franke, Günter
  • Huang, James
  • Stapleton, Richard C.
  • University of Konstanz, Center of Finance and Econometrics (CoFE)

Time of origin

  • 2007

Other Objects (12)