Arbeitspapier

Measuring inequality using censored data: a multiple imputation approach

To measure income inequality with right censored (topcoded) data, we propose multiple imputation for censored observations using draws from Generalized Beta of the Second Kind distributions to provide partially synthetic datasets analyzed using complete data methods. Estimation and inference uses Reiter's (Survey Methodology 2003) formulae. Using Current Population Survey (CPS) internal data, we find few statistically significant differences in income inequality for pairs of years between 1995 and 2004. We also show that using CPS public use data with cell mean imputations may lead to incorrect inferences about inequality differences. Multiply-imputed public use data provide an intermediate solution.

Language
Englisch

Bibliographic citation
Series: DIW Discussion Papers ; No. 866

Classification
Wirtschaft
Personal Income, Wealth, and Their Distributions
Specific Distributions; Specific Statistics
Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Subject
Income inequality
topcoding
partially synthetic data
CPS
current population survey
generalized beta of the second kind distribution
Einkommensverteilung
Disparitätsmaß
Tobit-Modell
Schätzung
Theorie
USA

Event
Geistige Schöpfung
(who)
Jenkins, Stephen P.
Burkhauser, Richard V.
Feng, Shuaizhang
Larrimore, Jeff
Event
Veröffentlichung
(who)
Deutsches Institut für Wirtschaftsforschung (DIW)
(where)
Berlin
(when)
2009

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Jenkins, Stephen P.
  • Burkhauser, Richard V.
  • Feng, Shuaizhang
  • Larrimore, Jeff
  • Deutsches Institut für Wirtschaftsforschung (DIW)

Time of origin

  • 2009

Other Objects (12)