Artikel

Online network monitoring

An important problem in network analysis is the online detection of anomalous behaviour. In this paper, we introduce a network surveillance method bringing together network modelling and statistical process control. Our approach is to apply multivariate control charts based on exponential smoothing and cumulative sums in order to monitor networks generated by temporal exponential random graph models (TERGM). The latter allows us to account for temporal dependence while simultaneously reducing the number of parameters to be monitored. The performance of the considered charts is evaluated by calculating the average run length and the conditional expected delay for both simulated and real data. To justify the decision of using the TERGM to describe network data, some measures of goodness of fit are inspected. We demonstrate the effectiveness of the proposed approach by an empirical application, monitoring daily flights in the United States to detect anomalous patterns.

Language
Englisch

Bibliographic citation
Journal: Statistical Methods & Applications ; ISSN: 1613-981X ; Volume: 30 ; Year: 2021 ; Issue: 5 ; Pages: 1337-1364 ; Berlin, Heidelberg: Springer

Classification
Mathematik
Subject
MCUSUM
MEWMA
Multivariate Control Charts
Network Modelling
Network Monitoring
Statistical Process Control
TERGM

Event
Geistige Schöpfung
(who)
Malinovskaya, Anna
Otto, Philipp
Event
Veröffentlichung
(who)
Springer
(where)
Berlin, Heidelberg
(when)
2021

DOI
doi:10.1007/s10260-021-00589-z
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Malinovskaya, Anna
  • Otto, Philipp
  • Springer

Time of origin

  • 2021

Other Objects (12)