Artikel

Online network monitoring

An important problem in network analysis is the online detection of anomalous behaviour. In this paper, we introduce a network surveillance method bringing together network modelling and statistical process control. Our approach is to apply multivariate control charts based on exponential smoothing and cumulative sums in order to monitor networks generated by temporal exponential random graph models (TERGM). The latter allows us to account for temporal dependence while simultaneously reducing the number of parameters to be monitored. The performance of the considered charts is evaluated by calculating the average run length and the conditional expected delay for both simulated and real data. To justify the decision of using the TERGM to describe network data, some measures of goodness of fit are inspected. We demonstrate the effectiveness of the proposed approach by an empirical application, monitoring daily flights in the United States to detect anomalous patterns.

Sprache
Englisch

Erschienen in
Journal: Statistical Methods & Applications ; ISSN: 1613-981X ; Volume: 30 ; Year: 2021 ; Issue: 5 ; Pages: 1337-1364 ; Berlin, Heidelberg: Springer

Klassifikation
Mathematik
Thema
MCUSUM
MEWMA
Multivariate Control Charts
Network Modelling
Network Monitoring
Statistical Process Control
TERGM

Ereignis
Geistige Schöpfung
(wer)
Malinovskaya, Anna
Otto, Philipp
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Berlin, Heidelberg
(wann)
2021

DOI
doi:10.1007/s10260-021-00589-z
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Malinovskaya, Anna
  • Otto, Philipp
  • Springer

Entstanden

  • 2021

Ähnliche Objekte (12)