Arbeitspapier

The anatomy of out-of-sample forecasting accuracy

We develop metrics based on Shapley values for interpreting time-series forecasting models, including "black-box" models from machine learning. Our metrics are model agnostic, so that they are applicable to any model (linear or nonlinear, parametric or nonparametric). Two of the metrics, iShapley-VI and oShapley-VI, measure the importance of individual predictors in fitted models for explaining the in-sample and out-of-sample predicted target values, respectively. The third metric is the performance-based Shapley value (PBSV), our main methodological contribution. PBSV measures the contributions of individual predictors in fitted models to the out-of-sample loss and thereby anatomizes out-of-sample forecasting accuracy. In an empirical application forecasting US inflation, we find important discrepancies between individual predictor relevance according to the in-sample iShapley-VI and out-ofsample PBSV. We use simulations to analyze potential sources of the discrepancies, including overfitting, structural breaks, and evolving predictor volatilities.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2022-16

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Neural Networks and Related Topics
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Financial Forecasting and Simulation
Thema
variable importance
out-of-sample performance
Shapley value
loss function
machine learning
inflation

Ereignis
Geistige Schöpfung
(wer)
Borup, Daniel
Goulet Coulombe, Philippe
Rapach, David E.
Montes Schütte, Erik Christian
Schwenk-Nebbe, Sander
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of Atlanta
(wo)
Atlanta, GA
(wann)
2022

DOI
doi:10.29338/wp2022-16
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Borup, Daniel
  • Goulet Coulombe, Philippe
  • Rapach, David E.
  • Montes Schütte, Erik Christian
  • Schwenk-Nebbe, Sander
  • Federal Reserve Bank of Atlanta

Entstanden

  • 2022

Ähnliche Objekte (12)