Arbeitspapier

The asymptotic minimax risk for the estimation of constrained binomial and multinomial probabilities

In this note we present a direct and simple approach to obtain bounds on the asymptotic minimax risk for the estimation of restrained binominal and multinominal proportions. Quadratic, normalized quadratic and entropy loss are considered and it is demonstrated that in all cases linear estimators are asymptotically minimax optimal. For the quadratic loss function the asymptotic minimax rsik does not change unless a neighborhood of the point 1/2 is excluded by the restrictions on the parameter space. For the two other loss functions the asymptotic minimax risks remain unchanged if additional knowledge about the location of the unknown probability of success is imposed. The results are also extended to the problem of minimax estimation of a vector of contrained multinominal propabilities.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2004,18

Subject
binominal distribution
multinominal distribution
entropy loss
quadratic loss
constrained parameter space
least favourable distribution

Event
Geistige Schöpfung
(who)
Braess, Dietrich
Dette, Holger
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2004

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Braess, Dietrich
  • Dette, Holger
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2004

Other Objects (12)