Arbeitspapier

On an integral equation for the free boundary of stochastic, irreversible investment problems

In this paper we derive a new handy integral equation for the free boundary of infinite time horizon, continuous time, stochastic, irreversible investment problems with uncertainty modeled as a one-dimensional, regular diffusion X0;x. The new integral equation allows to explicitly find the free boundary b(.) in some so far unsolved cases, as when X0;x is a three-dimensional Bessel process or a CEV process. Our result follows from purely probabilistic arguments. Indeed, we first show that b(X0;x(t)) = l L(t), with l L(t) unique optional solution of a representation problem in the spirit of Bank-El Karoui [4]; then, thanks to such identification and the fact that l L uniquely solves a backward stochastic equation, we find the integral problem for the free boundary.

Sprache
Englisch

Erschienen in
Series: Working Papers ; No. 471

Klassifikation
Wirtschaft
Mathematical Methods
Investment; Capital; Intangible Capital; Capacity
Capital Budgeting; Fixed Investment and Inventory Studies; Capacity
Thema
integral equation
free boundary
irreversible investment
singular stochastic control
optimal stopping
one-dimensional diffusion
Bank and El Karoui's Representation Theorem
base capacity

Ereignis
Geistige Schöpfung
(wer)
Ferrari, Giorgio
Ereignis
Veröffentlichung
(wer)
Bielefeld University, Institute of Mathematical Economics (IMW)
(wo)
Bielefeld
(wann)
2012

Handle
URN
urn:nbn:de:0070-pub-26740341
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ferrari, Giorgio
  • Bielefeld University, Institute of Mathematical Economics (IMW)

Entstanden

  • 2012

Ähnliche Objekte (12)