Arbeitspapier
On an integral equation for the free boundary of stochastic, irreversible investment problems
In this paper we derive a new handy integral equation for the free boundary of infinite time horizon, continuous time, stochastic, irreversible investment problems with uncertainty modeled as a one-dimensional, regular diffusion X0;x. The new integral equation allows to explicitly find the free boundary b(.) in some so far unsolved cases, as when X0;x is a three-dimensional Bessel process or a CEV process. Our result follows from purely probabilistic arguments. Indeed, we first show that b(X0;x(t)) = l L(t), with l L(t) unique optional solution of a representation problem in the spirit of Bank-El Karoui [4]; then, thanks to such identification and the fact that l L uniquely solves a backward stochastic equation, we find the integral problem for the free boundary.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Papers ; No. 471
- Klassifikation
-
Wirtschaft
Mathematical Methods
Investment; Capital; Intangible Capital; Capacity
Capital Budgeting; Fixed Investment and Inventory Studies; Capacity
- Thema
-
integral equation
free boundary
irreversible investment
singular stochastic control
optimal stopping
one-dimensional diffusion
Bank and El Karoui's Representation Theorem
base capacity
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Ferrari, Giorgio
- Ereignis
-
Veröffentlichung
- (wer)
-
Bielefeld University, Institute of Mathematical Economics (IMW)
- (wo)
-
Bielefeld
- (wann)
-
2012
- Handle
- URN
-
urn:nbn:de:0070-pub-26740341
- Letzte Aktualisierung
- 10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Ferrari, Giorgio
- Bielefeld University, Institute of Mathematical Economics (IMW)
Entstanden
- 2012