Arbeitspapier
Optimal smoothing for a computationally and statistically efficient single index estimator
In semiparametric models it is a common approach to under-smooth the nonparametric functions in order that estimators of the finite dimensional parameters can achieve root-n consistency. The requirement of under-smoothing may result as we show from inefficient estimation methods or technical difficulties. Based on local linear kernel smoother, we propose an estimation method to estimate the single-index model without under-smoothing. Under some conditions, our estimator of the single-index is asymptotically normal and most efficient in the semi-parametric sense. Moreover, we derive higher expansions for our estimator and use them to define an optimal bandwidth for the purposes of index estimation. As a result we obtain a practically more relevant method and we show its superior performance in a variety of applications.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 649 Discussion Paper ; No. 2009,028
- Classification
-
Wirtschaft
Mathematical and Quantitative Methods: General
Estimation: General
Semiparametric and Nonparametric Methods: General
- Subject
-
ADE
Asymptotics
Bandwidth
MAVE method
Semi-parametric efficiency
Schätztheorie
Nichtparametrisches Verfahren
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Xia, Yingcun
Härdle, Wolfgang Karl
Linton, Oliver
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (where)
-
Berlin
- (when)
-
2009
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Xia, Yingcun
- Härdle, Wolfgang Karl
- Linton, Oliver
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Time of origin
- 2009