Arbeitspapier

Optimal smoothing for a computationally and statistically efficient single index estimator

In semiparametric models it is a common approach to under-smooth the nonparametric functions in order that estimators of the finite dimensional parameters can achieve root-n consistency. The requirement of under-smoothing may result as we show from inefficient estimation methods or technical difficulties. Based on local linear kernel smoother, we propose an estimation method to estimate the single-index model without under-smoothing. Under some conditions, our estimator of the single-index is asymptotically normal and most efficient in the semi-parametric sense. Moreover, we derive higher expansions for our estimator and use them to define an optimal bandwidth for the purposes of index estimation. As a result we obtain a practically more relevant method and we show its superior performance in a variety of applications.

Language
Englisch

Bibliographic citation
Series: SFB 649 Discussion Paper ; No. 2009,028

Classification
Wirtschaft
Mathematical and Quantitative Methods: General
Estimation: General
Semiparametric and Nonparametric Methods: General
Subject
ADE
Asymptotics
Bandwidth
MAVE method
Semi-parametric efficiency
Schätztheorie
Nichtparametrisches Verfahren
Theorie

Event
Geistige Schöpfung
(who)
Xia, Yingcun
Härdle, Wolfgang Karl
Linton, Oliver
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(where)
Berlin
(when)
2009

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Xia, Yingcun
  • Härdle, Wolfgang Karl
  • Linton, Oliver
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Time of origin

  • 2009

Other Objects (12)