Arbeitspapier

Economists in the 2008 financial crisis: Slow to see, fast to act

We study the economics and finance scholars' reaction to the 2008 financial crisis using machine learning language analyses methods of Latent Dirichlet Allocation and dynamic topic modelling algorithms, to analyze the texts of 14,270 NBER working papers covering the 1999-2016 period. We find that academic scholars as a group were insufficiently engaged in crises' studies before 2008. As the crisis unraveled, however, they switched their focus to studying the crisis, its causes, and consequences. Thus, the scholars were "slow-to-see," but they were "fast-to-act." Their initial response to the ongoing Covid-19 crisis is consistent with these conclusions.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2022-01

Klassifikation
Wirtschaft
Business Fluctuations; Cycles
Financial Markets and the Macroeconomy
Monetary Policy, Central Banking, and the Supply of Money and Credit: General
International Finance: General
Financial Crises
Financial Institutions and Services: General
Thema
Financial crisis
Economic Crisis
Great recession
NBER working papers
LDA textual analysis
Topic modeling
Dynamic Topic Modeling
Machine learning

Ereignis
Geistige Schöpfung
(wer)
Levy, Daniel C.
Mayer, Tamir
Raviv, Alon
Ereignis
Veröffentlichung
(wer)
Bar-Ilan University, Department of Economics
(wo)
Ramat-Gan
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Levy, Daniel C.
  • Mayer, Tamir
  • Raviv, Alon
  • Bar-Ilan University, Department of Economics

Entstanden

  • 2022

Ähnliche Objekte (12)