Arbeitspapier

Stability of nonlinear AR-GARCH models

This paper studies the stability of nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a nonlinear autoregression of order p (AR(p)) with the conditional variance specified as a nonlinear first order generalized autoregressive conditional heteroskedasticity (GARCH(1,1)) model. Conditions under which the model is stable in the sense that its Markov chain representation is geometrically ergodic are provided. This implies the existence of an initial distribution such that the process is strictly stationary and beta-mixing. Conditions under which the stationary distribution has finite moments are also given. The results cover several nonlinear specifications recently proposed for both the conditional mean and conditional variance.

Sprache
Englisch

Erschienen in
Series: SSE/EFI Working Paper Series in Economics and Finance ; No. 632

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
ARCH-Modell
Markovscher Prozess
Heteroskedastizität

Ereignis
Geistige Schöpfung
(wer)
Meitz, Mika
Saikkonen, Pentti
Ereignis
Veröffentlichung
(wer)
Stockholm School of Economics, The Economic Research Institute (EFI)
(wo)
Stockholm
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Meitz, Mika
  • Saikkonen, Pentti
  • Stockholm School of Economics, The Economic Research Institute (EFI)

Entstanden

  • 2006

Ähnliche Objekte (12)