Arbeitspapier

A topic modeling perspective on investor uncertainty

We leverages computational linguistics to determine how the narrative content of earnings conference calls influences investors' uncertainty about a firm's future valuation. By applying statistical topic modeling to a corpus of 18,254 conference calls, we extract topics and tones from both analyst questions and executive responses. Our findings show that incorporating the estimated topics significantly increases the explained variance of implied volatility changes of equity options. Furthermore, our approach enables us to disentangle the overall effect into tone and topic effects, with executive statements' topics having the largest net effect, while tones from analyst statements are particularly relevant for pricing call options.

Language
Englisch

Bibliographic citation
Series: FAU Discussion Papers in Economics ; No. 04/2023

Classification
Wirtschaft
Subject
Earnings Conference Calls
Option Implied Volatility
Natural Language Processing
Sentiment
Topic Modeling

Event
Geistige Schöpfung
(who)
Perico Ortiz, Daniel
Schnaubelt, Matthias
Seifert, Oleg
Event
Veröffentlichung
(who)
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Economics
(where)
Nürnberg
(when)
2023

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Perico Ortiz, Daniel
  • Schnaubelt, Matthias
  • Seifert, Oleg
  • Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Economics

Time of origin

  • 2023

Other Objects (12)