Artikel

A time-varying parameter vector autoregression model for forecasting emerging market exchange rates

In this study, a vector autoregression (VAR) model with time-varying parameters (TVP) to predict the daily Indian rupee (INR)/US dollar (USD) exchange rates for the Indian economy is developed. The method is based on characterization of the TVP as an optimal control problem. The methodology is a blend of the flexible least squares and Kalman filter techniques. The out-of-sample forecasting performance of the TVP-VAR model is evaluated against the simple VAR and ARIMA models, by employing a cross-validation process and metrics such as mean absolute error, root mean square error, and directional accuracy. Outof-sample results in terms of conventional forecast evaluation statistics and directional accuracy show TVP-VAR model consistently outperforms the simple VAR and ARIMA models.

Sprache
Englisch

Erschienen in
Journal: International Journal of Economic Sciences and Applied Research ; ISSN: 1791-3373 ; Volume: 3 ; Year: 2010 ; Issue: 2 ; Pages: 21-39 ; Kavala: Kavala Institute of Technology

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Foreign Exchange
General Financial Markets: General (includes Measurement and Data)
Thema
stock prices
exchange rates
bivariate causality
forecasting

Ereignis
Geistige Schöpfung
(wer)
Kumar, Manish
Ereignis
Veröffentlichung
(wer)
Kavala Institute of Technology
(wo)
Kavala
(wann)
2010

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Kumar, Manish
  • Kavala Institute of Technology

Entstanden

  • 2010

Ähnliche Objekte (12)