Journal article | Zeitschriftenartikel
Internet surveys: can statistical adjustments eliminate coverage bias?
"The Internet is an attractive mode of data collection to survey researchers due to cost savings and timeliness in comparison with other modes. However, survey estimates are subject to coverage bias if sampled persons with Internet access are systematically different from those without Internet access who were excluded from the survey. Statistical adjustments, either through weighting or modeling methods, can minimize or even eliminate bias due to non-coverage. In the current paper, the authors examine the coverage bias associated with conducting a hypothetical Internet survey on frame of persons obtained through a random-digit-dial (RDD) sample. They compare estimates collected during telephone interviews from households with and without Internet access using data from the 2003 Michigan Behavioral Risk Factor Surveillance System in the United States. Statistical models are developed such that the coverage bias is negligible for most of the health outcomes analyzed from the Michigan survey. Though not definitive, the analysis results suggest that statistical adjustments can reduce, if not eliminate, coverage bias in the situation the authors study." (author's abstract)
- Weitere Titel
-
Interneterhebungen: können statistische Abgleiche Erfassungsverzerrungen eliminieren?
- ISSN
-
1864-3361
- Umfang
-
Seite(n): 47-60
- Sprache
-
Englisch
- Anmerkungen
-
Status: Veröffentlichungsversion; begutachtet (peer reviewed)
- Erschienen in
-
Survey Research Methods, 2(2)
- Thema
-
Sozialwissenschaften, Soziologie
Forschungsarten der Sozialforschung
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Methodenforschung
Methodologie
Nordamerika
Fehler
Telefoninterview
Gesundheitsverhalten
Methodenvergleich
Risiko
Befragung
USA
Interview
Internet
Privathaushalt
Fehlertheorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Dever, Jill A.
Rafferty, Ann
Valliant, Richard
- Ereignis
-
Veröffentlichung
- (wo)
-
Deutschland
- (wann)
-
2008
- DOI
- Letzte Aktualisierung
-
21.06.2024, 16:27 MESZ
Datenpartner
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Zeitschriftenartikel
Beteiligte
- Dever, Jill A.
- Rafferty, Ann
- Valliant, Richard
Entstanden
- 2008