Artikel
A new family of robust regression estimators utilizing robust regression tools and supplementary attributes
Zaman and Bulut (2018a) developed a class of estimators for a population mean utilising LMS robust regression and supplementary attributes. In this paper, a family of estimators is proposed, based on the adaptation of the estimators presented by Zaman (2019), followed by the introduction of a new family of regression-type estimators utilising robust regression tools (LAD, H-M, LMS, H-MM, Hampel-M, Tukey-M, LTS) and supplementary attributes. The mean square error expressions of the adapted and proposed families are determined through a general formula. The study demonstrates that the adapted class of the Zaman (2019) estimators is in every case more proficient than that of Zaman and Bulut (2018a). In addition, the proposed robust regression estimators based on robust regression tools and supplementary attributes are more efficient than those of Zaman and Bulut (2018a) and Zaman (2019).The theoretical findings are supported by real-life examples.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Statistics in Transition New Series ; ISSN: 2450-0291 ; Volume: 22 ; Year: 2021 ; Issue: 1 ; Pages: 207-216 ; New York: Exeley
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Sajjad, Irsa
Hanif, Muhammad
Koyuncu, Nursel
Shahzad, Usman
Al-Noor, Nadia H.
- Ereignis
-
Veröffentlichung
- (wer)
-
Exeley
- (wo)
-
New York
- (wann)
-
2021
- DOI
-
doi:10.21307/stattrans-2021-012
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Sajjad, Irsa
- Hanif, Muhammad
- Koyuncu, Nursel
- Shahzad, Usman
- Al-Noor, Nadia H.
- Exeley
Entstanden
- 2021