Arbeitspapier

Employment Effect of Innovation

We provide a novel evidence about the innovation-employment nexus by decomposing it by R&D intensity in a continuous setup and relaxing the linearity assumption. Using a large international firm-level panel data set for OECD countries and employing a flexible semi-parametric method – the generalised propensity score – allows us to recover the full functional relationship between the R&D-driven innovation and firm employment as well as address important econometric issues, which is not possible in the standard estimation approach used in the previous literature. Our results confirm that the relationship between innovation and employment entails important non-linearities responsible for significant differences in employment response to innovation at different R&D intensity levels.

ISBN
978-92-76-00041-9
Sprache
Englisch

Erschienen in
Series: JRC Working Papers in Economics and Finance ; No. 2019/2

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Multinational Firms; International Business
Demand and Supply of Labor: General
Labor Demand
Innovation; Research and Development; Technological Change; Intellectual Property Rights: General
Management of Technological Innovation and R&D
Technological Change: Choices and Consequences; Diffusion Processes
Thema
R&D investment
employment
propensity score
firm-level data

Ereignis
Geistige Schöpfung
(wer)
Kancs, d'Artis
Siliverstovs, Boriss
Ereignis
Veröffentlichung
(wer)
Publications Office of the European Union
(wo)
Luxembourg
(wann)
2019

DOI
doi:10.2760/52757
Handle
Letzte Aktualisierung
10.03.2025, 10:42 UTC

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kancs, d'Artis
  • Siliverstovs, Boriss
  • Publications Office of the European Union

Entstanden

  • 2019

Ähnliche Objekte (12)