Artikel

Understanding nonsense correlation between (independent) random walks in finite samples

Consider two independent random walks. By chance, there will be spells of association between them where the two processes move in the same direction, or in opposite direction. We compute the probabilities of the length of the longest spell of such random association for a given sample size, and discuss measures like mean and mode of the exact distributions. We observe that long spells (relative to small sample sizes) of random association occur frequently, which explains why nonsense correlation between short independent random walks is the rule rather than the exception. The exact figures are compared with approximations. Our finite sample analysis as well as the approximations rely on two older results popularized by Révész (Stat Pap 31:95–101, 1990, Statistical Papers). Moreover, we consider spells of association between correlated random walks. Approximate probabilities are compared with finite sample Monte Carlo results.

Sprache
Englisch

Erschienen in
Journal: Statistical Papers ; ISSN: 1613-9798 ; Volume: 63 ; Year: 2021 ; Issue: 1 ; Pages: 181-195 ; Berlin, Heidelberg: Springer

Klassifikation
Mathematik
Taxation, Subsidies, and Revenue: General
Thema
Coin tossing
Concordance
Discordance
Maximum length of association

Ereignis
Geistige Schöpfung
(wer)
Hassler, Uwe
Hosseinkouchack, Mehdi
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Berlin, Heidelberg
(wann)
2021

DOI
doi:10.1007/s00362-021-01237-0
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Hassler, Uwe
  • Hosseinkouchack, Mehdi
  • Springer

Entstanden

  • 2021

Ähnliche Objekte (12)