Arbeitspapier
Weighted k-nearest-neighbor techniques and ordinal classification
In the field of statistical discrimination k-nearest neighbor classification is a well-known, easy and successful method. In this paper we present an extended version of this technique, where the distance of the nearest neighbors can be taken into account. In this sense there is a close connection to LOESS, a local regression technique. In addition we show possibilities to use nearest neighbor for classification in the case of an ordinal class structure. Empirical studies show the advantages of the new technique.
- Language
-
Englisch
- Bibliographic citation
-
Series: Discussion Paper ; No. 399
- Event
-
Geistige Schöpfung
- (who)
-
Hechenbichler, Klaus
Schliep, Klaus
- Event
-
Veröffentlichung
- (who)
-
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
- (where)
-
München
- (when)
-
2004
- DOI
-
doi:10.5282/ubm/epub.1769
- Handle
- URN
-
urn:nbn:de:bvb:19-epub-1769-9
- Last update
- 10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Hechenbichler, Klaus
- Schliep, Klaus
- Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
Time of origin
- 2004