Arbeitspapier

Feature extraction with hybrid neural networks

Neural networks (NN) and fuzzy logic systems (FLS) are used successfully for financial forecasting, credit rating and portfolio management. In search for more sophisticated modeling techniques a mixture of NN and FLS has proved to be worth consideration. We propose the novel constructive approach by which a neuro fuzzy network is built up with the help of a constrained optimizer. The mathematical motivation for such hybrid networks is presented, using the Kolmogorov theory of metric entropy. As an application of the proposed approach we build a neuro fuzzy network model which is able to explain the prices of call options written on the S&P 500 stock index. While option pricing theory typically requires a highly complex statistical model to capture the empirical pricing mechanism, our results indicate that this algorithm leads to more parsimonious functional specificationes which have a superior out-of-sample performance.

Sprache
Englisch

Erschienen in
Series: Research Notes ; No. 00-6

Klassifikation
Wirtschaft
Thema
neural networks
fuzzy logic systems
entropy
option pricing
Prognoseverfahren
Fuzzy Sets
Neuronale Netze
Index-Futures
Optionspreistheorie
Theorie
USA

Ereignis
Geistige Schöpfung
(wer)
Wegmann, Georg
Ereignis
Veröffentlichung
(wer)
Deutsche Bank Research
(wo)
Frankfurt a. M.
(wann)
2000

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Wegmann, Georg
  • Deutsche Bank Research

Entstanden

  • 2000

Ähnliche Objekte (12)