Journal article | Zeitschriftenartikel

Least Squares Importance Sampling for Monte Carlo Security Pricing

We describe a simple Importance Sampling strategy for Monte Carlo simulations based on a least squares optimization procedure. With several numerical examples, we show that such Least Squares Importance Sampling (LSIS) provides efficiency gains comparable to the state of the art techniques, for problems that can be formulated in terms of the determination of the optimal mean of a multivariate Gaussian distribution. In addition, LSIS can be naturally applied to more general importance sampling densities and is particularly effective when the ability to adjust higher moments of the sampling distribution, or to deal with non-Gaussian or multi-modal densities, is critical to achieve variance reductions.

Least Squares Importance Sampling for Monte Carlo Security Pricing

Urheber*in: Capriotti, Luca

Free access - no reuse

0
/
0

Extent
Seite(n): 485-497
Language
Englisch
Notes
Status: Postprint; begutachtet (peer reviewed)

Bibliographic citation
Quantitative Finance, 8(5)

Subject
Wirtschaft
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik
Allgemeines, spezielle Theorien und Schulen, Methoden, Entwicklung und Geschichte der Wirtschaftswissenschaften
Theorieanwendung

Event
Geistige Schöpfung
(who)
Capriotti, Luca
Event
Veröffentlichung
(where)
Vereinigtes Königreich
(when)
2008

DOI
URN
urn:nbn:de:0168-ssoar-221168
Rights
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Last update
21.06.2024, 4:26 PM CEST

Data provider

This object is provided by:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.

Object type

  • Zeitschriftenartikel

Associated

  • Capriotti, Luca

Time of origin

  • 2008

Other Objects (12)