Journal article | Zeitschriftenartikel
Least Squares Importance Sampling for Monte Carlo Security Pricing
We describe a simple Importance Sampling strategy for Monte Carlo simulations based on a least squares optimization procedure. With several numerical examples, we show that such Least Squares Importance Sampling (LSIS) provides efficiency gains comparable to the state of the art techniques, for problems that can be formulated in terms of the determination of the optimal mean of a multivariate Gaussian distribution. In addition, LSIS can be naturally applied to more general importance sampling densities and is particularly effective when the ability to adjust higher moments of the sampling distribution, or to deal with non-Gaussian or multi-modal densities, is critical to achieve variance reductions.
- Extent
-
Seite(n): 485-497
- Language
-
Englisch
- Notes
-
Status: Postprint; begutachtet (peer reviewed)
- Bibliographic citation
-
Quantitative Finance, 8(5)
- Subject
-
Wirtschaft
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik
Allgemeines, spezielle Theorien und Schulen, Methoden, Entwicklung und Geschichte der Wirtschaftswissenschaften
Theorieanwendung
- Event
-
Geistige Schöpfung
- (who)
-
Capriotti, Luca
- Event
-
Veröffentlichung
- (where)
-
Vereinigtes Königreich
- (when)
-
2008
- DOI
- URN
-
urn:nbn:de:0168-ssoar-221168
- Rights
-
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
- Last update
-
21.06.2024, 4:26 PM CEST
Data provider
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.
Object type
- Zeitschriftenartikel
Associated
- Capriotti, Luca
Time of origin
- 2008