Arbeitspapier
Forecasting Realised Volatility using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment
We study the modelling of large data sets of high frequency returns using a long memory stochastic volatility (LMSV) model. Issues pertaining to estimation and forecasting of datasets using the LMSV model are studied in detail. Furthermore, a new method of de-seasonalising the volatility in high frequency data is proposed, that allows for slowly varying seasonality. Using both simulated as well as real data, we compare the forecasting performance of the LMSV model for forecasting realised volatility to that of a linear long memory model fit to the log realised volatility. The performance of the new seasonal adjustment is also compared to a recently proposed procedure using real data.
- Language
-
Englisch
- Bibliographic citation
-
Series: Papers ; No. 2004,02
- Classification
-
Wirtschaft
- Subject
-
Finanzmarkt
Volatilität
Saisonbereinigung
Schätztheorie
Theorie
USA
- Event
-
Geistige Schöpfung
- (who)
-
Hirvich, Clifford
Deo, Rohit S.
Luo, Yi
- Event
-
Veröffentlichung
- (who)
-
Humboldt-Universität zu Berlin, Center for Applied Statistics and Economics (CASE)
- (where)
-
Berlin
- (when)
-
2003
- Handle
- Last update
-
10.03.2025, 11:45 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Hirvich, Clifford
- Deo, Rohit S.
- Luo, Yi
- Humboldt-Universität zu Berlin, Center for Applied Statistics and Economics (CASE)
Time of origin
- 2003