Arbeitspapier

Forecasting Realised Volatility using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment

We study the modelling of large data sets of high frequency returns using a long memory stochastic volatility (LMSV) model. Issues pertaining to estimation and forecasting of datasets using the LMSV model are studied in detail. Furthermore, a new method of de-seasonalising the volatility in high frequency data is proposed, that allows for slowly varying seasonality. Using both simulated as well as real data, we compare the forecasting performance of the LMSV model for forecasting realised volatility to that of a linear long memory model fit to the log realised volatility. The performance of the new seasonal adjustment is also compared to a recently proposed procedure using real data.

Sprache
Englisch

Erschienen in
Series: Papers ; No. 2004,02

Klassifikation
Wirtschaft
Thema
Finanzmarkt
Volatilität
Saisonbereinigung
Schätztheorie
Theorie
USA

Ereignis
Geistige Schöpfung
(wer)
Hirvich, Clifford
Deo, Rohit S.
Luo, Yi
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, Center for Applied Statistics and Economics (CASE)
(wo)
Berlin
(wann)
2003

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hirvich, Clifford
  • Deo, Rohit S.
  • Luo, Yi
  • Humboldt-Universität zu Berlin, Center for Applied Statistics and Economics (CASE)

Entstanden

  • 2003

Ähnliche Objekte (12)