Artikel

Goodness-of-fit tests for copulas of multivariate time series

In this paper, we study the asymptotic behavior of the sequential empirical process and the sequential empirical copula process, both constructed from residuals of multivariate stochastic volatility models. Applications for the detection of structural changes and specification tests of the distribution of innovations are discussed. It is also shown that if the stochastic volatility matrices are diagonal, which is the case if the univariate time series are estimated separately instead of being jointly estimated, then the empirical copula process behaves as if the innovations were observed; a remarkable property. As a by-product, one also obtains the asymptotic behavior of rank-based measures of dependence applied to residuals of these time series models.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 5 ; Year: 2017 ; Issue: 1 ; Pages: 1-23 ; Basel: MDPI

Klassifikation
Wirtschaft
Hypothesis Testing: General
Semiparametric and Nonparametric Methods: General
Statistical Simulation Methods: General
Financial Econometrics
Thema
goodness-of-fit
time series
copulas
GARCH models

Ereignis
Geistige Schöpfung
(wer)
Rémillard, Bruno
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2017

DOI
doi:10.3390/econometrics5010013
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Rémillard, Bruno
  • MDPI

Entstanden

  • 2017

Ähnliche Objekte (12)