Artikel

Pricing options and computing implied volatilities using neural networks

This paper proposes a data-driven approach, by means of an Artificial Neural Network (ANN), to value financial options and to calculate implied volatilities with the aim of accelerating the corresponding numerical methods. With ANNs being universal function approximators, this method trains an optimized ANN on a data set generated by a sophisticated financial model, and runs the trained ANN as an agent of the original solver in a fast and efficient way. We test this approach on three different types of solvers, including the analytic solution for the Black-Scholes equation, the COS method for the Heston stochastic volatility model and Brent's iterative root-finding method for the calculation of implied volatilities. The numerical results show that the ANN solver can reduce the computing time significantly.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 7 ; Year: 2019 ; Issue: 1 ; Pages: 1-22 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
machine learning
neural networks
computational finance
option pricing
implied volatility
GPU
Black-Scholes
Heston

Ereignis
Geistige Schöpfung
(wer)
Liu, Shuaiqiang
Oosterlee, Cornelis Willebrordus
Bohte, Sander M.
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2019

DOI
doi:10.3390/risks7010016
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Liu, Shuaiqiang
  • Oosterlee, Cornelis Willebrordus
  • Bohte, Sander M.
  • MDPI

Entstanden

  • 2019

Ähnliche Objekte (12)