Arbeitspapier

Dynamic time series binary choice

This paper considers dynamic time series binary choice models. It proves near epoch dependence and strong mixing for the dynamic binary choice model with correlated errors. Using this result, it shows in a time series setting the validity of the dynamic probit likelihood procedure when lags of the dependent binary variable are used as regressors, and it establishes the asymptotic validity of Horowitz?smoothed maximum score estimation of dynamic binary choice models with lags of the dependent variable as regressors. For the semiparametric model, the latent error is explicitly allowed to be correlated. It turns out that no long-run variance estimator is needed for the validity of the smoothed maximum score procedure in the dynamic time series framework.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 538

Classification
Wirtschaft
Subject
Zeitreihenanalyse
Probit-Modell
Präferenztheorie

Event
Geistige Schöpfung
(who)
de Jong, Robert M.
Woutersen, Tiemen
Event
Veröffentlichung
(who)
The Johns Hopkins University, Department of Economics
(where)
Baltimore, MD
(when)
2007

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • de Jong, Robert M.
  • Woutersen, Tiemen
  • The Johns Hopkins University, Department of Economics

Time of origin

  • 2007

Other Objects (12)