Arbeitspapier
Identification and estimation in first-price auctions with risk-averse bidders and selective entry
We study identification and estimation in first-price auctions with risk-averse bidders and selective entry, building on a flexible entry and bidding framework we call the Affiliated Signal with Risk Aversion (AS-RA) model. This framework extends the AS model of Gentry and Li (2014) to accommodate arbitrary bidder risk aversion, thereby nesting a variety of standard models as special cases. It poses, however, a unique methodological challenge - existing results on identification with risk aversion fail in the presence of selection, while the selection-robust bounds of Gentry and Li (2014) fail in the presence of risk aversion. Motivated by this problem, we translate excludable variation in potential competition into identified sets for AS-RA primitives under various classes of restrictions on the model. We show that a single parametric restriction - on the copula governing selection into entry - is typically sufficient to restore point identification of all primitives. In contrast, a parametric form for utility yields point identification of the utility function but only partial identification of remaining primitives. Finally, we outline a simple semiparametric estimator combining Constant Relative Risk Aversion utility with a parametric signal-value copula. Simulation evidence suggests that this estimator performs very well even in small samples, underscoring the practical value of our identification results.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP16/15
- Klassifikation
-
Wirtschaft
- Thema
-
Auctions
endogenous participation
risk aversion
identification
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Gentry, Matthew
Li, Tong
Lu, Jingfeng
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2015
- DOI
-
doi:10.1920/wp.cem.2015.1615
- Handle
- Letzte Aktualisierung
- 10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Gentry, Matthew
- Li, Tong
- Lu, Jingfeng
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2015