Arbeitspapier

A note on symmetric random vectors with an application to discrete choice

This paper studies random vectors X featuring symmetric distributions in that i) the order of the random variables in X does not affect its distribution, or ii) the distribution of X is symmetric at zero. We derive a number of characterization results for such random vectors, thereby connecting the distributional symmetry to various notions of how (Euclidean) functions have been regarded as symmetric. In addition, we present results about the marginals and conditionals of symmetrically distributed random vectors, and apply some of our results to various transformations of random vectors, e.g., to sums or products of random variables, or in context of a choice probability system known from economic models of discrete choice.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 419

Klassifikation
Wirtschaft
Thema
Symmetric Distributions
Symmetric Random Vectors
Symmetric Random Variables
Symmetric Functions
Choice Probability System

Ereignis
Geistige Schöpfung
(wer)
Hefti, Andreas
Ereignis
Veröffentlichung
(wer)
University of Zurich, Department of Economics
(wo)
Zurich
(wann)
2022

DOI
doi:10.5167/uzh-221673
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hefti, Andreas
  • University of Zurich, Department of Economics

Entstanden

  • 2022

Ähnliche Objekte (12)