Artikel

Dimension reduction via penalized GLMs for non-Gaussian response: Application to stock market volatility

We fit U.S. stock market volatilities on macroeconomic and financial market indicators and some industry level financial ratios. Stock market volatility is non-Gaussian distributed. It can be approximated by an inverse Gaussian (IG) distribution or it can be transformed by Box-Cox transformation to a Gaussian distribution. Hence, we used a Box-Cox transformed Gaussian LASSO model and an IG GLM LASSO model as dimension reduction techniques and we attempted to identify some common indicators to help us forecast stock market volatility. Via simulation, we validated the use of four models, i.e., a univariate Box-Cox transformation Gaussian LASSO model, a three-phase iterative grid search Box-Cox transformation Gaussian LASSO model, and both canonical link and optimal link IG GLM LASSO models. The latter two models assume an approximately IG distributed response. Using these four models in an empirical study, we identified three macroeconomic indicators that could help us forecast stock market volatility. These are the credit spread between the U.S. Aaa corporate bond yield and the 10-year treasury yield, the total outstanding non-revolving consumer credit, and the total outstanding non-financial corporate bonds.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 14 ; Year: 2021 ; Issue: 12 ; Pages: 1-26 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
inverse Gaussian distribution
LASSO
stock market volatility

Ereignis
Geistige Schöpfung
(wer)
Li, Tao
Desmond, Anthony F.
Stengos, Thanasēs
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2021

DOI
doi:10.3390/jrfm14120583
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Li, Tao
  • Desmond, Anthony F.
  • Stengos, Thanasēs
  • MDPI

Entstanden

  • 2021

Ähnliche Objekte (12)