Artikel

COVID-19 pandemic and financial contagion

The original contribution of this paper is to empirically document the contagion of the Covid-19 on financial markets. We merge databases from Johns Hopkins Coronavirus Center, Oxford-Man Institute Realized Library, NYU Volatility Lab, and St-Louis Federal Reserve Board. We deploy three types of models throughout our experiments: (i) the Susceptible-Infective-Removed (SIR) that predicts the infections' peak on 2020-03-27; (ii) volatility (GARCH), correlation (DCC), and risk-management (Value-at-Risk (VaR)) models that relate how bears painted Wall Street red; and, (iii) data-science trees algorithms with forward prunning, mosaic plots, and Pythagorean forests that crunch the data on confirmed, deaths, and recovered Covid-19 cases and then tie them to high-frequency data for 31 stock markets.

Language
Englisch

Bibliographic citation
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 13 ; Year: 2020 ; Issue: 12 ; Pages: 1-25 ; Basel: MDPI

Classification
Wirtschaft
Subject
COVID-19
financial contagion
Johns Hopkins repository
Susceptible-Infective-Removed model
tree algorithm
data science

Event
Geistige Schöpfung
(who)
Chevallier, Julien
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2020

DOI
doi:10.3390/jrfm13120309
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Chevallier, Julien
  • MDPI

Time of origin

  • 2020

Other Objects (12)