Artikel
Portfolio optimization on multivariate regime-switching garch model with normal tempered stable innovation
This paper uses simulation-based portfolio optimization to mitigate the left tail risk of the portfolio. The contribution is twofold. (i) We propose the Markov regime-switching GARCH model with multivariate normal tempered stable innovation (MRS-MNTS-GARCH) to accommodate fat tails, volatility clustering and regime switch. The volatility of each asset independently follows the regime-switch GARCH model, while the correlation of joint innovation of the GARCH models follows the Hidden Markov Model. (ii) We use tail risk measures, namely conditional value-at-risk (CVaR) and conditional drawdown-at-risk (CDaR), in the portfolio optimization. The optimization is performed with the sample paths simulated by the MRS-MNTS-GARCH model. We conduct an empirical study on the performance of optimal portfolios. Out-of-sample tests show that the optimal portfolios with tail measures outperform the optimal portfolio with standard deviation measure and the equally weighted portfolio in various performance measures. The out-of-sample performance of the optimal portfolios is also more robust to suboptimality on the efficient frontier.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 15 ; Year: 2022 ; Issue: 5 ; Pages: 1-23
- Klassifikation
-
Management
- Thema
-
conditional value-at-risk
conditional drawdown-at-risk
GARCH model
Markov regime-switching model
normal tempered stable distribution
portfolio optimization
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Peng, Cheng
Kim, Young Shin
Mittnik, Stefan
- Ereignis
-
Veröffentlichung
- (wer)
-
MDPI
- (wo)
-
Basel
- (wann)
-
2022
- DOI
-
doi:10.3390/jrfm15050230
- Handle
- Letzte Aktualisierung
- 10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Peng, Cheng
- Kim, Young Shin
- Mittnik, Stefan
- MDPI
Entstanden
- 2022