Artikel

A comparison of artificial neural networks and bootstrap aggregating ensembles in a modern financial derivative pricing framework

In this paper, the pricing performances of two learning networks, namely an artificial neural network and a bootstrap aggregating ensemble network, were compared when pricing the Johannesburg Stock Exchange (JSE) Top 40 European call options in a modern option pricing framework using a constructed implied volatility surface. In addition to this, the numerical accuracy of the better performing network was compared to a Monte Carlo simulation in a separate numerical experiment. It was found that the bootstrap aggregating ensemble network outperformed the artificial neural network and produced price estimates within the error bounds of a Monte Carlo simulation when pricing derivatives in a multi-curve framework setting.

Language
Englisch

Bibliographic citation
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 14 ; Year: 2021 ; Issue: 6 ; Pages: 1-18 ; Basel: MDPI

Classification
Wirtschaft
Subject
artificial neural networks
collateral
funding
multi-curve framework
vanilla option pricing

Event
Geistige Schöpfung
(who)
Du Plooy, Ryno
Venter, Pierre J.
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2021

DOI
doi:10.3390/jrfm14060254
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Du Plooy, Ryno
  • Venter, Pierre J.
  • MDPI

Time of origin

  • 2021

Other Objects (12)