Arbeitspapier
DEA problems under geometrical or probability uncertainties of sample data
This paper discusses the theoretical and practical aspects of new methods for solving DEA problems under real-life geometrical uncertainty and probability uncertainty of sample data. The proposed minimax approach to solve problems with geometrical uncertainty of sample data involves an implementation of linear programming or minimax optimization, whereas the problems with probability uncertainty of sample data are solved through implementing of econometric and new stochastic optimization methods, using the stochastic frontier functions estimation.
- Language
-
Englisch
- Bibliographic citation
-
Series: Reihe Ökonomie / Economics Series ; No. 89
- Classification
-
Wirtschaft
Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Criteria for Decision-Making under Risk and Uncertainty
State and Local Budget and Expenditures
- Subject
-
DEA
sample data uncertainty
linear programming
minimax optimization
stochastic optimization
stochastic frontier functions
DEA
Ungewissheit von Daten
lineare Programmierung
minimax-Optimierung
stochastische Optimierungsmethoden
stochastische Grenzfunktionen
Mathematische Optimierung
Data-Envelopment-Analyse
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Althaler, Karl S.
Slavova, Tatjana
- Event
-
Veröffentlichung
- (who)
-
Institute for Advanced Studies (IHS)
- (where)
-
Vienna
- (when)
-
2000
- Handle
- Last update
-
10.03.2025, 11:45 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Althaler, Karl S.
- Slavova, Tatjana
- Institute for Advanced Studies (IHS)
Time of origin
- 2000