Arbeitspapier

DEA problems under geometrical or probability uncertainties of sample data

This paper discusses the theoretical and practical aspects of new methods for solving DEA problems under real-life geometrical uncertainty and probability uncertainty of sample data. The proposed minimax approach to solve problems with geometrical uncertainty of sample data involves an implementation of linear programming or minimax optimization, whereas the problems with probability uncertainty of sample data are solved through implementing of econometric and new stochastic optimization methods, using the stochastic frontier functions estimation.

Language
Englisch

Bibliographic citation
Series: Reihe Ökonomie / Economics Series ; No. 89

Classification
Wirtschaft
Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Criteria for Decision-Making under Risk and Uncertainty
State and Local Budget and Expenditures
Subject
DEA
sample data uncertainty
linear programming
minimax optimization
stochastic optimization
stochastic frontier functions
DEA
Ungewissheit von Daten
lineare Programmierung
minimax-Optimierung
stochastische Optimierungsmethoden
stochastische Grenzfunktionen
Mathematische Optimierung
Data-Envelopment-Analyse
Theorie

Event
Geistige Schöpfung
(who)
Althaler, Karl S.
Slavova, Tatjana
Event
Veröffentlichung
(who)
Institute for Advanced Studies (IHS)
(where)
Vienna
(when)
2000

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Althaler, Karl S.
  • Slavova, Tatjana
  • Institute for Advanced Studies (IHS)

Time of origin

  • 2000

Other Objects (12)