Artikel
Stable weak approximation at work in index-linked catastrophe bond pricing
We consider the subject of approximating tail probabilities in the general compound renewal process framework, where severity data are assumed to follow a heavy-tailed law (in that only the first moment is assumed to exist). By using the weak convergence of compound renewal processes to a-stable Lévy motion, we derive such weak approximations. Their applicability is then highlighted in the context of an existing, classical, index-linked catastrophe bond pricing model, and in doing so, we specialize these approximations to the case of a compound time-inhomogeneous Poisson process. We emphasize a unique feature of our approximation, in that it only demands finiteness of the first moment of the aggregate loss processes. Finally, a numerical illustration is presented. The behavior of our approximations is compared to both Monte Carlo simulations and first-order single risk loss process approximations and compares favorably.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Risks ; ISSN: 2227-9091 ; Volume: 5 ; Year: 2017 ; Issue: 4 ; Pages: 1-19 ; Basel: MDPI
- Klassifikation
-
Wirtschaft
- Thema
-
index-linked catastrophe bonds
compound renewal process
compound Poisson process
heavy-tailed claims
table Lévy motion
weak convergence
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Burnecki, Krzysztof
Giuricich, Mario Nicoló
- Ereignis
-
Veröffentlichung
- (wer)
-
MDPI
- (wo)
-
Basel
- (wann)
-
2017
- DOI
-
doi:10.3390/risks5040064
- Handle
- Letzte Aktualisierung
- 10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Burnecki, Krzysztof
- Giuricich, Mario Nicoló
- MDPI
Entstanden
- 2017