INVESTIGATING DIFFERENT SIMILARITY METRICS USED IN VARIOUS RECOMMENDER SYSTEMS TYPES: SCENARIO CASES

Abstract. A recommendation system represents a very efficient way to propose solutions adapted to customers needs. It allows users to discover interesting items from a large amount of data according to their preferences. To do this, it uses a similarity metric, which determines how similar two users or products are. In the case of recommender systems, similarity computation is a practical step. The calculation of similarity may be used for both items and users. Following the similarity calculation, a user or item with a comparable computation value can be recommended together with the goods to a user with similar preferences. The user’s requirements influence the choice of similarity metric. This paper explores various similarity measurement methods employed in recommender systems. We compare correlation and distance techniques to determine the capabilities of different similitude calculation algorithms and synthesize which similarity measure is adapted for which type of recommendation.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
INVESTIGATING DIFFERENT SIMILARITY METRICS USED IN VARIOUS RECOMMENDER SYSTEMS TYPES: SCENARIO CASES ; volume:XLVIII-4/W3-2022 ; year:2022 ; pages:187-193 ; extent:7
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-4/W3-2022 (2022), 187-193 (gesamt 7)

Urheber
Stitini, O.
Kaloun, S.
Bencharef, O.

DOI
10.5194/isprs-archives-XLVIII-4-W3-2022-187-2022
URN
urn:nbn:de:101:1-2022120804383197191175
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:33 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Stitini, O.
  • Kaloun, S.
  • Bencharef, O.

Ähnliche Objekte (12)