Arbeitspapier

Marginalized predictive likelihood comparisons of linear Gaussian state-space models with applications to DSGE, DSGEVAR, and VAR models

The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models with Bayesian methods, and proposes to utilize a missing observations consistent Kalman filter in the process of achieving this objective. As an empirical application, we analyze euro area data and compare the density forecast performance of a DSGE model to DSGE-VARs and reduced-form linear Gaussian models.

Sprache
Englisch

Erschienen in
Series: CFS Working Paper Series ; No. 478

Klassifikation
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
Bayesian inference
density forecasting
Kalman filter
missing data
Monte Carlo integration
predictive likelihood

Ereignis
Geistige Schöpfung
(wer)
Warne, Anders
Coenen, Günter
Christoffel, Kai
Ereignis
Veröffentlichung
(wer)
Goethe University Frankfurt, Center for Financial Studies (CFS)
(wo)
Frankfurt a. M.
(wann)
2014

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Warne, Anders
  • Coenen, Günter
  • Christoffel, Kai
  • Goethe University Frankfurt, Center for Financial Studies (CFS)

Entstanden

  • 2014

Ähnliche Objekte (12)