Arbeitspapier
Efficient Implementation with Interdependent Valuations and Maxmin Agents
We consider a single object allocation problem with multidimensional signals and interdependent valuations. When agents signals are statistically independent, Jehiel and Moldovanu show that efficient and Bayesian incentive compatible mechanisms generally do not exist. In this paper, we extend the standard model to accommodate maxmin agents and obtain necessary as well as sufficient conditions under which efficient allocations can be implemented. In particular, we derive a condition that quantifies the amount of ambiguity necessary for efficient implementation. We further show that under some natural assumptions on the preferences, this necessary amount of ambiguity becomes sufficient. Finally, we provide a definition of informational size such that given any nontrivial amount of ambiguity, efficient allocations can be implemented if agents are sufficiently informationally small.
- Language
-
Englisch
- Bibliographic citation
-
Series: Discussion Paper ; No. 92
- Classification
-
Wirtschaft
Allocative Efficiency; Cost-Benefit Analysis
Asymmetric and Private Information; Mechanism Design
- Subject
-
efficient implementation
ambiguity aversion
multidimensional signal
interdependent valuation
- Event
-
Geistige Schöpfung
- (who)
-
Song, Yangwei
- Event
-
Veröffentlichung
- (who)
-
Ludwig-Maximilians-Universität München und Humboldt-Universität zu Berlin, Collaborative Research Center Transregio 190 - Rationality and Competition
- (where)
-
München und Berlin
- (when)
-
2018
- Handle
- Last update
-
10.03.2025, 11:46 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Song, Yangwei
- Ludwig-Maximilians-Universität München und Humboldt-Universität zu Berlin, Collaborative Research Center Transregio 190 - Rationality and Competition
Time of origin
- 2018