Evaluating multimodal AI in medical diagnostics

Abstract: This study evaluates multimodal AI models’ accuracy and responsiveness in answering NEJM Image Challenge questions, juxtaposed with human collective intelligence, underscoring AI’s potential and current limitations in clinical diagnostics. Anthropic’s Claude 3 family demonstrated the highest accuracy among the evaluated AI models, surpassing the average human accuracy, while collective human decision-making outperformed all AI models. GPT-4 Vision Preview exhibited selectivity, responding more to easier questions with smaller images and longer questions

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
npj digital medicine. - 7, 1 (2024) , 205, ISSN: 2398-6352

Classification
Medizin, Gesundheit

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2024
Creator
Kaczmarczyk, Robert
Wilhelm, Theresa Isabelle
Martin, Ron
Roos, Jonas

DOI
10.1038/s41746-024-01208-3
URN
urn:nbn:de:bsz:25-freidok-2565754
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:20 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Kaczmarczyk, Robert
  • Wilhelm, Theresa Isabelle
  • Martin, Ron
  • Roos, Jonas
  • Universität

Time of origin

  • 2024

Other Objects (12)