Journal article | Zeitschriftenartikel
Good questions, bad questions? A Post-Survey Evaluation Strategy Based on Item Nonresponse
In this paper we discuss a three-step strategy to evaluate data quality in terms of item nonresponse and to identify potentially flawed questions. We provide an example with several data sets of a large-scale social scientific study to illustrate the application of the strategy and to highlight its benefits. In survey research it is common practice to test questions ex ante, for example by means of cognitive pretesting. Nevertheless, it is necessary to check the respondents’ response behavior throughout the questionnaire to evaluate the quality of the collected data. Articles addressing item nonresponse mostly focus on individuals or specific questions – adjusting the focus on the questionnaire as a whole seems to be a fruitful addition for survey methodology. Shifting the perspective enables us to identify problematic questions ex post and adjust the questionnaire or research design before re-applying it to further studies or to assess the data quality of a study. This need may arise from shortcomings or failures during the cognitive pretesting or as a result of unforeseen events during the data collection. Furthermore, result of this ex post analysis may be an integral part of data quality reports.
- ISSN
-
2296-4754
- Umfang
-
Seite(n): 10
- Sprache
-
Englisch
- Anmerkungen
-
Status: Veröffentlichungsversion; begutachtet (peer reviewed)
- Erschienen in
-
Survey Methods: Insights from the Field
- Thema
-
Sozialwissenschaften, Soziologie
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Datenqualität
Antwortverhalten
statistische Analyse
Umfrageforschung
Befragung
Datengewinnung
Methodologie
Fragebogen
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Gummer, Tobias
Roßmann, Joss
- Ereignis
-
Veröffentlichung
- (wo)
-
Deutschland
- (wann)
-
2013
- DOI
- URN
-
urn:nbn:de:0168-ssoar-353070
- Rechteinformation
-
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
- Letzte Aktualisierung
-
21.06.2024, 16:27 MESZ
Datenpartner
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Zeitschriftenartikel
Beteiligte
- Gummer, Tobias
- Roßmann, Joss
Entstanden
- 2013