Hydrogenation of Inorganic Metal Carbonates: A Review on Its Potential for Carbon Dioxide Utilization and Emission Reduction

Abstract: Carbonaceous minerals represent a valuable and abundant resource. Their exploitation is based on decarboxylation at elevated temperature and under oxidizing conditions, which inevitably release carbon dioxide into the atmosphere. Hydrogenation of inorganic metal carbonates opens up a new pathway for processing several metal carbonates. Preliminary experimental studies revealed significant advantages over conventional isolation technologies. Under a reducing hydrogen atmosphere, the temperature of decarboxylation is significantly lower. Carbon dioxide is not directly released into the atmosphere, but may be reduced to carbon monoxide, methane, and higher hydrocarbons, which adds value to the overall process. Apart from metal oxides in different oxidation states, metals in their elemental form may also be obtained if transition‐metal carbonates are processed under a hydrogen atmosphere. This review summarizes the most important findings and fields of the application of metal carbonate hydrogenation to elucidate the need for a detailed investigation into optimized process conditions for large‐scale applications.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Hydrogenation of Inorganic Metal Carbonates: A Review on Its Potential for Carbon Dioxide Utilization and Emission Reduction ; volume:11 ; number:19 ; year:2018 ; pages:3357-3375 ; extent:19
ChemSusChem ; 11, Heft 19 (2018), 3357-3375 (gesamt 19)

Creator
Lux, Susanne
Baldauf‐Sommerbauer, Georg
Siebenhofer, Matthäus

DOI
10.1002/cssc.201801356
URN
urn:nbn:de:101:1-2022090212205123732692
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:37 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Lux, Susanne
  • Baldauf‐Sommerbauer, Georg
  • Siebenhofer, Matthäus

Other Objects (12)