Laser‐Based Joining of Electrode Stacks for Automated Large‐Scale Production of Li‐Ion Battery Cells

Battery technology is the basis for the electrification of mobility and the key to a sustainable future. Herein, lithium‐ion battery (LIB) cells are experiencing increasing demand, especially in the automotive industry. To meet the rising needs, highly productive and cost‐efficient processes in battery cell production need to be available. Within the joint project HoLiB—High Throughput Processes in Lithium Ion Battery Manufacturing, a continuous manufacturing process for battery cell production is developed, set up, and evaluated. The aim is to separate, batch, and contact a cell stack within a cycle time of two seconds. The joining of the individual battery electrodes to each other is of particular importance. The process should enable contacting of both electrodes within the specified cycle time, while joining both aluminum and copper in a process‐reliable manner. These requirements are met by laser beam welding. The energy input is localized and the fast processing enables the contacting of both materials in a very short time. This article describes the development of laser‐based contacting of the electrode stacks with the arrester tabs. For this purpose, three beam sources with “blue”, “green,” and near‐infrared wavelengths are tested and evaluated for the joining requirements.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Laser‐Based Joining of Electrode Stacks for Automated Large‐Scale Production of Li‐Ion Battery Cells ; day:02 ; month:12 ; year:2022 ; extent:11
Energy technology ; (02.12.2022) (gesamt 11)

Creator
Olowinsky, Alexander
Spurk, Christoph
Helm, Johanna
Gillner, Arnold

DOI
10.1002/ente.202200770
URN
urn:nbn:de:101:1-2022120314142943355779
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:29 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Olowinsky, Alexander
  • Spurk, Christoph
  • Helm, Johanna
  • Gillner, Arnold

Other Objects (12)